Parts
A lathe may or may not have a stand (or legs), which sits on the floor and elevates the lathe bed to a working height. Some lathes are small and sit on a workbench ortable, and do not have a stand.
Almost all lathes have a bed, which is (almost always) a horizontal beam (although some CNC lathes have a vertical beam for a bed to ensure that swarf, or chips, falls free of the bed). A notable exception is the Hegner VB36 Master Bowlturner, a woodturning lathe designed for turning large bowls, which in its basic configuration is little more than a very large floor-standing headstock.
At one end of the bed (almost always the left, as the operator faces the lathe) is aheadstock. The headstock contains high-precision spinning bearings. Rotating within the bearings is a horizontal axle, with an axis parallel to the bed, called thespindle. Spindles are often hollow, and have exterior threads and/or an interiorMorse taper on the "inboard" (i.e., facing to the right / towards the bed) by which workholding accessories may be mounted to the spindle. Spindles may also have exterior threads and/or an interior taper at their "outboard" (i.e., facing away from the bed) end, and/or may have a handwheel or other accessory mechanism on their outboard end. Spindles are powered, and impart motion to the workpiece.
The spindle is driven, either by foot power from a treadle and flywheel or by a belt or gear drive to a power source. In most modern lathes this power source is an integral electric motor, often either in the headstock, to the left of the headstock, or beneath the headstock, concealed in the stand.
In addition to the spindle and its bearings, the headstock often contains parts to convert the motor speed into various spindle speeds. Various types of speed-changing mechanism achieve this, from a cone pulley or step pulley, to a cone pulley with back gear (which is essentially a low range, similar in net effect to the two-speed rear of a truck), to an entire gear train similar to that of a manual-shift auto transmission. Some motors have electronic rheostat-type speed controls, which obviates cone pulleys or gears.
The counterpoint to the headstock is the tailstock, sometimes referred to as the loose head, as it can be positioned at any convenient point on the bed, by undoing a locking nut, sliding it to the required area, and then relocking it. The tailstock contains a barrel which does not rotate, but can slide in and out parallel to the axis of the bed, and directly in line with the headstock spindle. The barrel is hollow, and usually contains a taper to facilitate the gripping of various type of tooling. Its most common uses are to hold a hardened steel centre, which is used to support long thin shafts while turning, or to hold drill bits for drilling axial holes in the work piece. Many other uses are possible.[3]
Metalworking lathes have a carriage (comprising a saddle and apron) topped with a cross-slide, which is a flat piece that sits crosswise on the bed, and can be cranked at right angles to the bed. Sitting atop the cross slide is usually another slide called a compound rest, which provides 2 additional axes of motion, rotary and linear. Atop that sits a toolpost, which holds a cutting tool which removes material from the workpiece. There may or may not be a leadscrew, which moves the cross-slide along the bed.
Woodturning and metal spinning lathes do not have cross-slides, but rather have banjos, which are flat pieces that sit crosswise on the bed. The position of a banjo can be adjusted by hand; no gearing is involved. Ascending vertically from the banjo is a toolpost, at the top of which is a horizontal toolrest. In woodturning, hand tools are braced against the tool rest and levered into the workpiece. In metal spinning, the further pin ascends vertically from the tool rest, and serves as a fulcrum against which tools may be levered into the workpiece.
Love what you're doing here guys, keep it up!.. CNC router
ReplyDelete